Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells, Phase

Completed Technology Project (2012 - 2012)

Project Introduction

Nanostructured Thin Films (NSTF), used as substrates for catalysts, have proven to be highly active for oxygen reduction in fuel cells. This improvement in activity is expected to transfer to electrolyzer technology as the NSTF substrate layer, with a ruthenium oxide based catalyst, is used for oxygen evolution. Slow anode kinetics in electrolysis provide the bulk of the cell overpotential. An increase in anode catalyst activity and decrease in masstransfer effects, as seen with the thin NSTF catalyst layers and ruthenium oxide based catalysts, would mean an increase in overall efficiency for the electrolyzer systems. In fuel cells, the catalyst layer thickness has been reduced by a factor of 20 compared to the state of the art, and specific activity has increased by an order of magnitude. An additional benefit is that the substrate manufacture, catalyst coating and MEA production are done via a roll-good process, ensuring consistency of product for high reliability.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Giner, Inc.	Lead Organization	Industry	Newton, Massachusetts
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Project Transitions	
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells, Phase

Completed Technology Project (2012 - 2012)

Primary U.S. Work Locations		
California	Massachusetts	

Project Transitions

0

February 2012: Project Start

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138260)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Giner, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

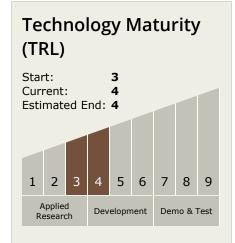
Carlos Torrez

Principal Investigator:

Jason Willey

Co-Investigator:

Jason Willey



Small Business Innovation Research/Small Business Tech Transfer

Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells, Phase

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └ TX03.2 Energy Storage
 - └ TX03.2.2 Electrochemical: Fuel

Cells

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

